Can pull mechanisms achieve agriculture development objectives?
Evidence from AgResults external evaluation

UK Department for International Development (DFID)
Chief Economist’s Seminar Series
February 24, 2020
Abt Associates
Presentation outline

• What are pull mechanisms?
• AgResults – created to test pull mechanisms
• How well has AgResults worked?
• What have we learnt – how can we make the most of pull mechanisms?
Pull mechanisms

- Pull mechanisms are among results-based approaches:

<table>
<thead>
<tr>
<th>With or without milestone prize</th>
<th>Grand challenge</th>
<th>Advance market commitments</th>
<th>Proportional prize</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Winner takes all for developing the innovation</td>
<td>• Typically a single winner who gets advance commitment of purchase of innovation at a pre-specified price</td>
<td>• Multiple winners based on their performance</td>
</tr>
<tr>
<td></td>
<td>• Allows monopoly pricing</td>
<td>• Ensures marginal cost pricing</td>
<td>• Expects competitive pricing because of multiple suppliers</td>
</tr>
</tbody>
</table>
• AgResults is a $145 million multilateral initiative, managed by a dedicated Secretariat and overseen by a Steering Committee comprised of the five donor agencies and the World Bank as financial trustee.

• AgResults provides prizes to temporarily offset underlying market conditions that limit private sector investment in agriculture technology development or technology adoption. Its technology adoption projects aim to create a market for the technology.

• AgResults’ learning agenda is to understand the effectiveness of pull mechanisms and other related questions - Abt Associates’ role as external evaluator.
Key elements of pull mechanisms

Development Problem
- A specific development problem that the pull mechanism can address

A Solution
- A specific technology – proven, or needs tailoring – that can address the problem

Competitors
- Private sector actors who have an underlying interest in the market for the solution and who will respond to incentives

Incentive structure
- A well-defined outcome that solvers are incentivized to achieve
- A prize structure – winner-takes-all, proportional prize

Theory of change
- A series of causal relationships that tie together all the preceding elements linking them to final impact

Verification protocol
- An independent, transparent cost-effective and tamper-proof system to verify that the outcomes were achieved

See brief “Pull mechanisms for overcoming market failure in agriculture sector.”
AgResults Projects

Completed

Vietnam GHG Emissions Reduction Project
Testing and scaling up improved, low emissions rice farming technologies

Nigeria Aflasafe™ Project
Promoting adoption of biocontrol technology to combat aflatoxin (fungal mold) in maize

Kenya On-Farm Storage Project
Expanding improved on-farm storage for smallholder farmers

Uganda Legume Seeds Project
Strengthening the production and distribution value chain for improved legume seeds

Zambia Biofortified Maize Project
Incentivizing uptake of pro-Vitamin A orange maize

Stopped early

Kenya On-Farm Storage Project
Expanding improved on-farm storage for smallholder farmers

Uganda Legume Seeds Project
Strengthening the production and distribution value chain for improved legume seeds

Zambia Biofortified Maize Project
Incentivizing uptake of pro-Vitamin A orange maize

Stopped early

Brucellosis Vaccine Development Project (Global)
Creating a low-cost and effective Brucellosis vaccine

Completed

Brucellosis Vaccine Development Project (Global)
Creating a low-cost and effective Brucellosis vaccine
Pull mechanisms in the context of market failure in provision of agricultural technologies for poor consumers

- Lack of awareness
- Poor infrastructure
- Credit market constraints
- Risk of loss

Missing market for technology

- Low demand for technology and derived products
 - Lack of awareness
 - Credit, land, labor market constraints
 - Risk of loss
 - Externalities

- Low supply of technology

- Weak institutions and policy environment
AgResults: Addressing market failure

- Low demand for technology and derived products
- Weak institutions and policy environment
- Low supply of technology
- Missing market for technology

AgResults Incentive: prize proportional to sale of technology to smallholders

Investment (or transfer of incentives) that increase expected return from adoption

Increase in expected revenue from sale of technology
Missing market because...

<table>
<thead>
<tr>
<th>Country</th>
<th>Farmers' Issues</th>
<th>Suppliers' Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nigeria</td>
<td>Farmers are not aware of aflatoxins or Aflasafe as a solution, or of premium markets for aflatoxin-free maize</td>
<td>Suppliers face poor infrastructure and lack of financing to source aflatoxin-free maize from smallholders</td>
</tr>
<tr>
<td>Kenya</td>
<td>Farmers are not aware of improved on-farm storage</td>
<td>Suppliers face distributional constraints in reaching smallholders</td>
</tr>
<tr>
<td>Zambia</td>
<td>Farmers and value chain actors are not aware of PVA maize and its benefits</td>
<td>Policies that favor white rice, higher cost in sourcing maize from smallholders</td>
</tr>
<tr>
<td>Uganda</td>
<td>Farmers cannot distinguish improved quality seeds</td>
<td>No quality certification of seeds</td>
</tr>
<tr>
<td>Vietnam</td>
<td>Farmers are not aware of GHG emissions from rice or of technologies that reduce emissions and increase returns</td>
<td>Externalities, lack of a business case to have farmers adopt low emissions technology</td>
</tr>
<tr>
<td>Brucellosis</td>
<td>Farmers do not see the value of brucellosis vaccine either because of they are not aware of it or because they think it is not efficacious</td>
<td>Externalities, low ability to pay by final consumers</td>
</tr>
</tbody>
</table>
How AgResults pull mechanisms work:

<table>
<thead>
<tr>
<th>Country</th>
<th>Project incentivizes …</th>
<th>and awards prizes for …</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nigeria</td>
<td>Maize aggregators</td>
<td>Per unit prize for every ton of maize aggregated that is treated with an aflatoxin biocontrol agent – Aflasafe – from smallholders</td>
</tr>
<tr>
<td>Kenya</td>
<td>On-farm storage device suppliers</td>
<td>Proportional prize based on on-farm storage capacity sold to smallholders</td>
</tr>
<tr>
<td>Uganda</td>
<td>Seed companies</td>
<td>Per unit prize based on amount of certified legume seeds sold above 8% annual growth</td>
</tr>
<tr>
<td>Zambia</td>
<td>a) Maize millers and b) Seed companies</td>
<td>Threshold prize and per unit prize for selling a) Pro Vitamin-A milled maize and b) Pro Vitamin A maize seeds</td>
</tr>
</tbody>
</table>
Evaluation questions

- **Market impact.** Did the private sector invest to create a smallholder-inclusive market for the technology?

- **Development impact.** Did the smallholders benefit?

- **Cost effectiveness.** What was the cost per adopting farmer?
How did the AgResults Nigeria Aflasafe project perform compared to expectations in the business plan by the end of four years?

Expectation on Market and Production Impact

- **Pilot expected to created a niche market for Aflasafe-treated maize** with around 3% market penetration

- **Smallholder impact.**
 - Smallholders will increase income from maize
 - Smallholders will consume more Aflasafe-treated maize by virtue of own consumption, and because of awareness of the adverse effects of aflatoxins

Project performance

- **A niche market was created** with multiple and diverse private sector actors investing in supplying Alfasafe-treated maize. Market penetration was 1% of total maize harvested. Farmer adoption increased by 56 percentage points in AgResults villages.

- **Smallholders** increased maize income by $318 or 16 percent, and consumption of Aflasafe-treated maize increased by 0.02 kg per day or 13 percent. Smallholder awareness about aflatoxins increased by only 22 percentage points.

See [evaluation brief](#) and [report](#).
Evaluation approach

The evaluation conducted:

• **Qualitative analysis** of 223 interviews with maize value chain actors to assess the development of the market using a structure-conduct-performance framework.

• **Quasi-experimental evaluation** using data from structured surveys of 1823 smallholders in Kano, Kaduna, and Katsina to assess the pilot’s impact on:
 - smallholders in villages reached by AgResults.
 - smallholders in villages not reached by AgResults (after balancing on baseline characteristics).

• **Cost-effectiveness analysis** using project monitoring data, pilot costs, and publicly-available data.
How did the AgResults Kenya OFS project perform compared to expectations in the business plan?

Expectation of market and smallholder impact

- **Market impact**: Project was expected to create a market for OFS with market penetration of 6% in Eastern region and 18% in Rift Valley.

- **Smallholder impact**: reduced post-harvest loss, reduction in expenditure on maize for consumption, possibly increased maize income and reduced use of pesticide dust. Estimated benefit from post-harvest savings for marketing or consumption was projected at $6-$34 per OFS

Project performance

- **An emerging market was created** with multiple firms competing to provide OFS. There was a 23 percentage point increase in adoption in Eastern and 6 percentage point increase in Rift Valley.

- **Smallholder impact**: Increase in Maize revenue net of costs for container, pesticide, and purchased maize for consumption from OFS adoption was $3 but it was not statistically significant. Smallholders reduced the use of pesticide dust.
Evaluation approach

• **Qualitative method:** Semi-structured interviews with 80 stakeholders to assess market impact using structure-conduct performance approach.

• **Quantitative method:**
 – Estimated impacts of project on adoption using interrupted time series design
 – Estimated impacts of adoption on other farmer returns including food security, by matching adopters with similar non-adopters
Adoption of OFS

Eastern

Rift Valley

2011: 1% 2012: 1% 2013: 2% 2014: 2% 2015: 2% 2016: 3% 2017: 4%

Regression-adjusted pre-intervention trend time series
Regression-adjusted post-intervention trend time series
Projected using pre-intervention trend
Comparing cost-effectiveness in Nigeria and Kenya

<table>
<thead>
<tr>
<th></th>
<th>Nigeria</th>
<th>Kenya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project cost per smallholder household adopting technology</td>
<td>$135</td>
<td>$39</td>
</tr>
<tr>
<td>Smallholder return for adopting technology (excluding health benefits)</td>
<td>$318**</td>
<td>$3</td>
</tr>
</tbody>
</table>

Cost per smallholder adopting:
- Nigeria costs are higher because Aflasafe is a more complex technology to adopt with field level intervention needed.
- The scale of adoption was higher in Kenya, and therefore the cost per smallholder adopting was lower.

Smallholder returns:
- Smallholder returns were greater from adoption Aflasafe than from purchase of OFS.
Zambia learning

• If enabling environment is a main cause for market failure, a pull mechanism will not succeed.
 – The policy environment was always a challenge – preferential treatment of white maize and periodic export bans that disrupted the market. This was the reason the project closed early.

• Theory of change should link incentive structure to development impact.
 – Initial design had a weak theory of change to achieve development impact – incentivizing maize millers for selling milled maize would have benefited farmers only if they sourced Pro Vitamin A maize from farmers, which was questionable.
 – Updated design to include seed company sales of Pro Vitamin A maize to farmers improved the link to development impact.
Uganda learning

- If enabling environment is a main cause for market failure, a pull mechanism will not succeed.
 - Uganda’s seed sector is a market for lemons. Lack of a quality certification means that the bad seeds drive out the good. Without quality certification, the pull mechanism would also not work.
 - The project was redesigned to include a quality certification system—AgVerify— which did not launch, causing the project to close early.
Key findings

• **Pull mechanisms can create a market** for technologies beneficial to smallholders if competitors can address the key constraints or if the enabling environment is not an impediment.

• **Pull mechanisms attract multiple private sector** actors with more participation when the chances of winning are greater (per unit prize compared to proportional prize).

• **Smallholder impacts can vary** for many reasons – targeting by private sector actors, strategic behavior by competitors, and technology characteristics.
Key lessons

- **Type of technology matters.** Adoption is stronger when technology yields private benefits and/or when the benefits are clearly perceived by the users; additional resources may be needed to raise broader awareness for technology that has public goods attributes.

- **Private sector may not do all the work.** Strategic behavior by competitors could inhibit development impact.

- **Theory of change requires sound understanding of the market.** It should flesh out how private sector will respond to incentives, how that will result in development impact and results will sustain.

- **Do cost-benefit analysis, do it early.** Ex-ante cost-benefit analysis is key to assess expected development impact and the degree of sensitivity of the impacts on assumptions; it can also help set prize amount (see blog).

- **For evaluators: Private sector actors may not treat those interviewed at baseline.** Baselines are critical but may not always be useful in cases where multiple private sector actors implement with freedom to innovate as they go!
Appendix slides
<table>
<thead>
<tr>
<th>Outcome</th>
<th>Treatment mean (regression adjusted) (A)</th>
<th>Comparison mean (B)</th>
<th>Impact (C = A-B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uptake. Percentage of smallholders who applied Aflasafe on at least one maize plot</td>
<td>57%</td>
<td>1%</td>
<td>56***</td>
</tr>
<tr>
<td>Farmer knew the health risks of aflatoxins</td>
<td>23%</td>
<td>1%</td>
<td>22 ***</td>
</tr>
<tr>
<td>Cook knew about the health risks of aflatoxins</td>
<td>6%</td>
<td>0%</td>
<td>6 ***</td>
</tr>
<tr>
<td>Income. Net maize income ($/annum)</td>
<td>2,305</td>
<td>1,987</td>
<td>318***</td>
</tr>
<tr>
<td>Consumption. Aflasafe-treated maize consumption yesterday per person (kg)</td>
<td>0.02</td>
<td>0.00</td>
<td>0.02 ***</td>
</tr>
<tr>
<td></td>
<td>Adopters (A)</td>
<td>Non-adopters (B)</td>
<td>Difference (C=B-A)</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Primary outcome:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Household revenue from sales (in 2010 Ksh)</td>
<td>479</td>
<td>310</td>
<td>169***</td>
</tr>
<tr>
<td>Maize revenue net of costs for container, pesticide, and purchased maize for consumption (2010 Ksh)</td>
<td>-1,135</td>
<td>-1628</td>
<td>493**</td>
</tr>
<tr>
<td>Cost of pesticides used in stored grain (2010 Ksh)</td>
<td>104</td>
<td>304</td>
<td>-200***</td>
</tr>
<tr>
<td>Annualized cost of containers (2010 Ksh)</td>
<td>189</td>
<td>69</td>
<td>120***</td>
</tr>
<tr>
<td>Primary outcome:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amount spent on maize for consumption during the past 12 months (2010 Ksh)</td>
<td>1,353</td>
<td>1,646</td>
<td>-292</td>
</tr>
<tr>
<td>Household used any pesticides in grain stored for consumption</td>
<td>20.7</td>
<td>56.5</td>
<td>-35.8***</td>
</tr>
</tbody>
</table>